Thyrotropin (TSH) Test System

Product Code: 325-300

1.0 INTRODUCTION

Intended Use: The Quantitative Determination of Thyrotropin Concentration in Human Serum by a Microplate Immunoassay method

2.0 SUMMARY AND EXPLANATION OF THE TEST

Measurement of the serum concentration of thyrotropin (TSH), a glycoprotein with a molecular weight of 28,000 Daltons and secreted from the anterior pituitary, is generally regarded as the most sensitive indicator available for the diagnosis of primary and secondary (pluri) hypothyroidism (1, 2). The structure of human TSH is similar to that of the pituitary and placental gonadotrophins, consisting of an alpha- and beta-subunit which is similar or identical between these hormones and a 115-amino acid beta-subunit, which apparently confers hormonal specificity. The production of the 2 subunits is separately regulated with apparent excess production of the alpha-subunit. The TSH molecule has a linear structure consisting of the protein core with carbohydrate chains; the latter accounts for 16% of the molecular weight.

TSH measurements are equally useful in differentiating secondary and tertiary (hypothalamic) hypothyroidism from the primary type. TSH release from the pituitary is regulated by thyrotropin releasing factor (TRH), which is secreted by the hypothalamus, and by direct action of T4 and triiodothyronine (T3), the thyroid hormones, at the pituitary. Increase levels of T3 and T4 reduces the response of the pituitary to the stimulatory effects of TRH. In secondary and tertiary hypothyroidism, levels of T4 are usually low and TSH levels are generally low or normal. Either pituitary TSH deficiency (secondary hypothyroidism) or insufficiency of stimulation of the pituitary by TRH (tertiary hypothyroidism) causes this. The TRH stimulation test differentiates these conditions. In secondary hypothyroidism, TSH response to TRH is blunted while a normal or delayed response is obtained in tertiary hypothyroidism.

Further, the advent of immunoassay methods has provided the laboratory with sufficient sensitivity to enable the differentiating of hypothyroidism from euthyroid population and extending the usefulness of TSH measurements. This method is a second generation assay, which provides the means for discrimination in the hyperthyroid-euthyroid range. The functional sensitivity (20% between assay CV) of the one-hour procedure is 0.195 µU/ml. All the one-hour procedure has a functional sensitivity of 0.095µU/ml (3).

In this method, TSH calibrator, patient specimen or control is first added to a streptavidin coated well. Biotinylated monoclonal and enzyme labeled antibodies are added and the reactants mixed. Reaction between the various TSH antibodies and native TSH forms a sandwich complex that binds with the streptavidin coated to the well.

After the completion of the required incubation period, the antibody bound enzyme-thyrotropin conjugate is separated from the unbound enzyme-thyrotropin conjugate by aspiration or decantation. The activity of the enzyme present on the surface of the well is quantitated by reaction with a suitable substrate to produce color.

The employment of several serum references of known thyrotropin levels permits construction of a dose response curve of activity and concentration. From comparison to the dose response curve quantitation of an unknown specimen’s activity can be correlated with thyrotropin concentration.

3.0 PRINCIPLE

Immunoenzymometric assay (TYPE 3):

The essential reagents required for an immunoenzymometric assay include high affinity and specificity antibodies (enzyme conjugated and immobilized), with different and distinct epitope recognition, in excess, and native antigen. In this procedure, the immobilization takes place during the assay at the surface of a microplate well through the interaction of streptavidin coated on the well and exogenously added biotinylated monoclonal anti- TSH antibody. Upon mixing monoclonal biotinylated antibody, the enzyme-labeled antibody and a serum containing the native antigen, reaction results between the native antigen and the antibodies, without competition or steric hindrance, to form a soluble sandwich complex. The interaction is illustrated by the following equation:

\[E_{\text{Ab} +} + A_{\text{Ag}} + A_{\text{Ab}} + A_{\text{Ag}} \rightarrow E_{\text{Ab} +} + A_{\text{Ab}} \rightarrow E_{\text{Ab} +} + A_{\text{Ab}} \]

\[E_{\text{Ab} +} + A_{\text{Ab}} + A_{\text{Ag}} \rightarrow E_{\text{Ab} +} + A_{\text{Ab}} \]

Simultaneously, the complex is deposited to the well through the high affinity reaction of streptavidin and biotinylated antibody. This interaction is illustrated below:

\[E_{\text{Ab} +} + A_{\text{Ab}} + A_{\text{Ag}} \rightarrow E_{\text{Ab} +} + A_{\text{Ab}} \]

After equilibrium is attained, the antibody-bound fraction is separated from unbound fraction by dilution or aspiration. The enzyme activity in the antibody-bound fraction is directly proportional to the native antigen concentration. By utilizing several different serum references of known antigen values, a dose response curve can be generated from which the antigen concentration of an unknown can be ascertained.

4.0 REAGENTS

Materials Provided:

A. Thyrotropin Calibrators – 1mLvial - Icons A-G

- One (1) vial containing enzyme labeled affinity purified polyclonal goat antibody, biotinyl monoclonal mouse IgG in a sodium chloride and sodium phosphate buffer. Store at 2-8°C.

B. TSH Enzyme Reagent – 1mLvial - Icon ▶

- One (1) vial containing enzyme labeled affinity purified polyclonal goat antibody, biotinyl monoclonal mouse IgG in a sodium chloride and sodium phosphate buffer. Store at 2-8°C.

- Streptavidin Coat Plate – 96 wells - Icon ▶

- One 96-well microplate coated with streptavidin and packaged in an aluminum bag with a drying agent. Store at 2-8°C.

D. Wash Solution Concentrate – 20 ml - Icon ▶

- One (1) vial containing a surfactant in buffered saline. A preservative has been added. Store at 2-8°C.

E. Substrate A – 7mLvial - Icon ▶

- One (1) bottle containing tetramethylbenzidine (TMB) in buffer. Store at 2-8°C.

F. Substrate B – 7mLvial - Icon ▶

- One (1) bottle containing hydrogen peroxide (H2O2) in buffer. Store at 2-8°C.

G. Stop Solution – 1mLvial - Icon ▶

- One (1) bottle containing a strong acid (1N HCl). Store at 2-8°C.

H. Product Instructions

Note 1: Do not use reagents beyond the kit expiration date.

Note 2: Do not use reagents that are contaminated or have imperfections in a microplate reader.

Note 3: EnzAb

- Subunit which is similar or identical between these hormones and a 115-amino acid beta-subunit, which apparently confers hormonal specificity.

Note 4: Before proceeding with the assay, bring all reagents, serum and specimen to room temperature (20 - 27°C).

Test Procedure should be performed by a skilled individual or trained professional

- Format the microwells’ wells for each serum reference, control and patient specimen to be assayed in duplicate.

- Replace any unused microwell strips back into the aluminum bag, seal and store at 2-8°C.

- Pipette 0.050 ml (50µl) of the appropriate serum reference, control or specimen into the assigned well.

- Add 0.100 ml (100µl) of the TSH Enzyme Reagent to each well. It is very important to dispense all reagents close to the bottom of the coated well.

- Swirl the microplate gently for 20-30 seconds to mix and cover.

- Incubate 60 minutes at room temperature.

- Discard the contents of the microwell by decantation or aspiration. If decanting, tap and blot the plate dry with filter paper.

- Add 350µl of wash buffer (see Reagent Preparation Section) directly to each well. Gently mix and aspirate. Repeat 2 or 3 additional times for a total of three (3) washes.

- Add 0.100 ml (100µl) of working substrate solution to all wells (see Reagent Preparation Section). Always add reagents in the same order to minimize reaction time differences between wells.

- DO NOT SHAKE THE PLATE AFTER SUBSTRATE ADDITION

- Incubate at room temperature for fifteen (15) minutes.

- Add 0.050ml (50µl) of stop solution to each well and mix gently for 30 seconds.

- Read the absorbance in each well at 450nm (using a microplate reader).

- **For In Vitro Diagnostic Use**

- Safe disposal of kit components must be according to local regulatory and statutory requirement.

5.0 PRECAUTIONS

For In Vitro Diagnostic Use Not for Internal or External Use in Humans or Animals

All products that contain human serum have been found to be reactive for Hepatitis B Surface antigen, HIV 1&2 and HCV antibodies by FDA required tests. Since no known test can offer complete assurance that infectious agents are absent, all human serum products are handled as potentially hazardous in order to prevent inadvertent transmission of disease. Good laboratory procedures for washing, blotting and blood products can be found in the Center for Disease Control / National Institute of Health, "Biosafety in Microbiological and Biomedical Laboratories," 2nd Edition, 1988, HHS.

6.0 TEST PROCEDURE

Before proceeding with the assay, bring all reagents, serum references and controls to room temperature (20 - 27°C).

- **Test Procedure should be performed by a skilled individual or trained professional**

- Format the microwells’ wells for each serum reference, control and patient specimen to be assayed in duplicate.

- Replace any unused microwell strips back into the aluminum bag, seal and store at 2-8°C.

- Pipette 0.050 ml (50µl) of the appropriate serum reference, control or specimen into the assigned well.

- Add 0.100 ml (100µl) of the TSH Enzyme Reagent to each well. It is very important to dispense all reagents close to the bottom of the coated well.

- Swirl the microplate gently for 20-30 seconds to mix and cover.

- Incubate 60 minutes at room temperature.

- Discard the contents of the microwell by decantation or aspiration. If decanting, tap and blot the plate dry with filter paper.

- Add 350µl of wash buffer (see Reagent Preparation Section) directly to each well. Gently mix and aspirate. Repeat 2 or 3 additional times for a total of three (3) washes.

- Add 0.100 ml (100µl) of working substrate solution to all wells (see Reagent Preparation Section). Always add reagents in the same order to minimize reaction time differences between wells.

- DO NOT SHAKE THE PLATE AFTER SUBSTRATE ADDITION

- Incubate at room temperature for fifteen (15) minutes.

- Add 0.050ml (50µl) of stop solution to each well and mix gently for 30 seconds.

- Read the absorbance in each well at 450nm (using a reference wavelength of 620-630nm to minimize well imperfections) in a microplate reader. The results should be read within thirty (30) minutes of adding the stop solution.

- **For better low-end sensitivity (< 0.5µU/ml), incubate 120 minutes at room temperature. The 40µl/µl calibrator should be exchanged for the 20µl/µl calibrator over 3.0 units will be experienced. Follow the remaining steps.

- Dilute samples reading over 40 µL/1.5 and 1.0 with TSH ‘0’ Calibrator. Multiply the results by the dilution factor to obtain accurate results.
10.0 CALCULATION OF RESULTS

A dose response curve is used to ascertain the concentration of thyrotropin in unknown specimens.

1. Record the absorbance obtained from the printout of the microplate reader as outlined in Example 1.
2. Plot the absorbance for each duplicate serum reference versus the corresponding concentration in µIU/ml on linear graph paper (do not average the duplicates of the serum references before plotting).
3. Draw the best-fit curve through the plotted points.
4. To determine the concentration of TSH for an unknown, locate the absorbance of the duplicates for each unknown on the vertical axis of the graph, find the intersecting point on the curve, and read the concentration (in µIU/ml) from the horizontal axis of the graph (the duplicates of the unknown may be averaged as indicated).

In the following example, the average absorbance (0.775) intersects the dose response curve at (7.66 µIU/ml)

The TSH concentration (See Figure 1).

Note: Computer data reduction software designed for ELISA assay may also be used for the data reduction. If such software is utilized, the validation of the software should be ascertained.

12.0 RISK ANALYSIS

The MSDS and Risk Analysis Form for this product is available on request from Monobind Inc.

12.1 Assay Performance

1. It is important that the time of reaction in each well be held constant to a specified range.
2. Pipetting of samples should not extend beyond ten (10) minutes to avoid assay drift.
3. Introduce the homogenized or grossly contaminated specimen(s) should not be used.
4. If more than one (1) plate is recommended to repeat the assays for each specimen.
5. The addition of substrate solution initiates a kinetic reaction, which is terminated by the addition of the stop solution. Therefore, the substrate should not be added in the same sequence to eliminate any time-during reaction during development.
6. Plate readers measure vertically. Do not touch the bottom of the wells.
7. Failure to remove adhering solution adequately in the aspiration or decantation wash step(s) may result in poor replication and spurious results.
8. Use components from the same lot. No intermixing of reagents from different batches.
9. Accurate and precise pipetting, as well as the following the exact time and temperature requirements prescribed are essential.
10. Any deviation from Monobind’s IFU may yield inaccurate results.
11. Patient specimens with TSH concentrations over 40µIU/ml may be diluted (1:5 or 1:10) with the ‘0’ calibrator and re-assayed. The sample's concentration is obtained by multiplying the result by the dilution factor.
12. It is important to calibrate all the equipment e.g. Pipettes, Readers, Washers and/or the automated instruments used with this device in accordance with routine preventative maintenance.
13. Analytical - as required by CE Mark IVD Directive 98/79/EC - for this and other devices, made by Monobind, can be requested via email from Monobind@monobind.com.

12.2 Interpretation

1. Measurement and interpretation of results must be performed by a skilled individual or trained professional.
2. Laboratory results alone are only one aspect for determining patient care and should not be the sole basis for therapy, particularly if the results conflict with other determinants.
3. For valid test results, accurate controls and other parameters must be within the listed ranges and assay requirements.
4. If test kits are altered, such as mixing parts of different kits, which could produce false test results, or if results are incorrectly interpreted for laboratory purposes.
5. If computer controlled data reduction is used to interpret the results of the test, it is imperative that the predicted values for the calibrators fall within 10% of the assigned concentrations.
6. Serum TSH concentration is dependent upon a multiplicity of factors: hypothalamic gland function, thyroid gland function, and the response of the pituitary to TSH. Thus, thyrotropin concentration alone is not sufficient to assess clinical status.
7. Serum TSH values may be elevated by pharmacological intervention. Dopomiperone, amiodarone, iodide, phenobarbital, and phenytoin have been reported to increase TSH levels.
8. A decrease in thyrotropin values has been reported with the administration of propranolol, methimazol, dopamine and thyroxine (4).
9. Genetic variations or degradation of intact TSH into subunits may affect the binding characteristics of the antibodies and influence the final result. Such samples normally exhibit different results among various assay systems due to the reactivity of the antibodies involved.

"NOT INTENDED FOR NEWBORN SCREENING"

13.0 EXPECTED RANGES OF VALUES

A study of euthyroid adult population was undertaken to determine expected values for the TSH AccuBind™ ELISA Test

System. The number and determined range are given in Table 1. A nonparametric method (95% Percentile Estimate) was used.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cross Reactivity</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyrotrpin (hTSH)</td>
<td><0.001</td>
<td>100ng/ml</td>
</tr>
<tr>
<td>Follicitin (hFSH)</td>
<td><0.001</td>
<td>100ng/ml</td>
</tr>
<tr>
<td>Lutropin Hormone (hLH)</td>
<td><0.001</td>
<td>100ng/ml</td>
</tr>
<tr>
<td>Chlorionic</td>
<td><0.001</td>
<td>100ng/ml</td>
</tr>
</tbody>
</table>

14.5 Correlation between 1 hr and 2 hr incubation

The one- (1) and two (2) (optional) incubation procedures were compared. Thirty (30) biological specimens (ranging from 0.1 – 16.5 µIU/ml) were used. Three least square regression equation and the correlation coefficient were computed for the 2 procedure (y) in comparison with the 1 hour (x) method. Excellent agreement is evidenced by the correlation coefficient, slope and intercept:

\[Y = 0.986 \times x + 0.119 \]

Regression Correlation = 0.998

15.0 REFERENCES

8. All applicable national standards, regulations and laws, including, but not limited to, good laboratory procedures, must be strictly followed to ensure compliance and proper device usage.

11.9 G.C. PARAMETERS

In order for the assay results to be considered valid the following criteria should be met:
1. The absorbance of calibrator ‘G’ (40 µIU/ml) should be > 1.3.
2. Four out of six quality control pools should be within the established ranges.

In order for the assay results to be considered valid the following criteria should be met:
1. The absorbance of calibrator ‘G’ (40 µIU/ml) should be > 1.3.
2. Four out of six quality control pools should be within the established ranges.